CFD Simulation of a Low NOx Oil Fired Boiler

Author:

Hochenauer C.1,Brandstetter G.2

Affiliation:

1. Graz University of Technology, Graz, Austria

2. Austrian Energy and Environment AG, Graz, Austria

Abstract

This paper compares the results of an advanced CFD calculation with measurements of a heavy fuel oil fired low NOx boiler. First, a state of the art boiler was investigated and the impact of boiler load and excess air on the NOx emissions was measured. In a second test run a staged combustion technology was integrated using the over fire air concept. The over fire technology is well known and well tested in coal fired boilers. In this pilot boiler it was shown that the over fire air technology could be used for oil fired boilers, too — leading to an enormous NOx reduction without any increase in CO and soot emissions. It was shown that the influence of boiler load, excess air and over fire air on the NOx and CO emissions can be predicted very well in the CFD calculation. Detailed numerical investigations showed that two-phase effects, a good turbulence model, gas and soot radiation and a detailed chemical kinetics mechanism are a must when modeling (staged) heavy oil combustion. The results of the CFD calculation showed an excellent agreement with the measurements over a very wide range of boiler settings and load factors although NOx is extremely difficult to predict.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3