Engineering Silicone Rubbers for In Vitro Studies: Creating AAA Models and ILT Analogues With Physiological Properties

Author:

Corbett T. J.1,Doyle B. J.1,Callanan A.1,Walsh M. T.1,McGloughlin T. M.1

Affiliation:

1. Centre for Applied Biomedical Engineering Research (CABER), Department of Mechanical and Aeronautical Engineering, MSSi, University of Limerick, Limerick, Ireland

Abstract

In vitro studies of abdominal aortic aneurysm (AAA) have been widely reported. Frequently mock artery models with intraluminal thrombus (ILT) analogs are used to mimic the in vivo AAA. While the models used may be physiological, their properties are frequently either not reported or investigated. This study is concerned with the testing and characterization of previously used vessel analog materials and the development of new materials for the manufacture of AAA models. These materials were used in conjunction with a previously validated injection molding technique to manufacture AAA models of ideal geometry. To determine the model properties (stiffness (β) and compliance), the diameter change of each AAA model was investigated under incrementally increasing internal pressures and compared with published in vivo studies to determine if the models behaved physiologically. A FEA study was implemented to determine if the pressure-diameter change behavior of the models could be predicted numerically. ILT analogs were also manufactured and characterized. Ideal models were manufactured with ILT analog internal to the aneurysm region, and the effect of the ILT analog on the model compliance and stiffness was investigated. The wall materials had similar properties (Einit 2.22 MPa and 1.57 MPa) to aortic tissue at physiological pressures (1.8 MPa (from literature)). ILT analogs had a similar Young’s modulus (0.24 MPa and 0.33 MPa) to the medial layer of ILT (0.28 MPa (from literature)). All models had aneurysm sac compliance (2.62–8.01×10−4/mm Hg) in the physiological range (1.8–9.4×10−4/mm Hg (from literature)). The necks of the AAA models had similar stiffness (20.44–29.83) to healthy aortas (17.5±5.5 (from literature)). Good agreement was seen between the diameter changes due to pressurization in the experimental and FEA wall models with a maximum difference of 7.3% at 120 mm Hg. It was also determined that the inclusion of ILT analog in the sac of the models could have an effect on the compliance of the model neck. Ideal AAA models with physiological properties were manufactured. The behavior of these models due to pressurization was predicted using finite element analysis, validating this technique for the future design of realistic physiological AAA models. Addition of ILT analogs in the aneurysm sac was shown to affect neck behavior. This could have implications for endovascular AAA repair due to the importance of the neck for stent-graft fixation.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3