Numerical Simulation of a BPH Thermal Therapy—A Case Study Involving TUMT

Author:

Abraham John P.1,Sparrow Ephraim M.2,Ramadhyani Satish3

Affiliation:

1. School of Engineering, University of St. Thomas, St. Paul, MN 55105-1079; and Laboratory for Heat Transfer and Fluid Flow Practice, St. Paul, MN 55108-1314

2. Mechanical Engineering Department, University of Minnesota, Minneapolis, MN 55455-0111; and Laboratory for Heat Transfer and Fluid Flow Practice, St. Paul, MN 55108-1314

3. Laboratory for Heat Transfer and Fluid Flow Practice, St. Paul, MN 55108-1314

Abstract

The use of numerical simulation as a means to predict the outcome of transurethral microwave thermotherapy (TUMT) is set forth in detail. The simulation was carried out as a case study of a specific TUMT procedure. The selection of the case study was based on the availability of extensive medical records which documented an extraordinary application of TUMT. Predictions were made of the time-varying temperature patterns within the prostate, the bladder, the sphincter, the pelvic floor, and the fat and connective tissue which envelop these organs. These temperature patterns provided the basis of maps which highlighted those locations where necrosis occurred. An injury integral was used to predict the extent of the necrotic tissue produced by the therapy. It was found that, for the specific case being considered, necrosis occurred not only within the prostate but also extended to the neck of the bladder and to the fatty tissue. A special feature of the simulation was the accounting of the liquid-to-vapor phase change of the interstitial water. The vapor generated by the phase change is believed to significantly enlarge the region of necrosis. By the same token, the vapor pressure is expected to cause motion of the high-temperature liquid to deep-tissue regions. The damage predicted by the numerical simulation was compared, in detail, with post-operative medical examinations and found to be corroborated.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference38 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3