In-Plane Stiffness of Additively Manufactured Hierarchical Honeycomb Metamaterials With Defects

Author:

Rahman Kazi Moshiur1,Hu Zhong1,Letcher Todd1

Affiliation:

1. Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007 e-mail:

Abstract

Cellular metamaterials are of interest for many current engineering applications. The incorporation of hierarchy to cellular metamaterials enhances the properties and introduces novel tailorable metamaterials. For many complex cellular metamaterials, the only realistic manufacturing process is additive manufacturing (AM). The use of AM to manufacture large structures may lead to several types of manufacturing defects, such as imperfect cell walls, irregular thickness, flawed joints, partially missing layers, and irregular elastic–plastic behavior due to toolpath. It is important to understand the effect of defects on the overall performance of the structures to determine if the manufacturing defect(s) are significant enough to abort and restart the manufacturing process or whether the material can still be used in its nonperfect state. In this study, the performance of hierarchical honeycomb metamaterials with defects has been investigated through simulations and experiments, and hierarchical honeycombs were shown to demonstrate more sensitivity to missing cell walls than regular honeycombs. On average, the axial elastic modulus decreased by 45% with 5.5% missing cell walls for regular honeycombs, 60% with 4% missing cell walls for first-order hierarchical honeycomb and 95% with 4% missing cell walls for second-order hierarchical honeycomb. The transverse elastic modulus decreased by about 45% with more than 5.5% missing cell walls for regular honeycomb, about 75% with 4% missing cell walls for first-order and more than 95% with 4% missing cell walls for second-order hierarchical honeycomb.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3