Fabrication of Multimeasurand Sensor for Monitoring of a Li-Ion Battery

Author:

Knobloch Aaron1,Kapusta Chris2,Karp Jason2,Plotnikov Yuri2,Siegel Jason B.3,Stefanopoulou Anna G.4

Affiliation:

1. Fellow ASME General Electric Global Research, KWB322, One Research Circle, Niskayuna, NY 12309 e-mail:

2. General Electric Global Research, One Research Circle, Niskayuna, NY 12309 e-mail:

3. Department of Mechanical Engineering, University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109 e-mail:

4. Fellow ASME Department of Mechanical Engineering, University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109 e-mail:

Abstract

This paper details the fabrication and testing of a combined temperature and expansion sensor to improve state of charge (SOC) and state of health (SOH) estimation for Li-ion batteries. These sensors enable the characterization of periodic stress and strain changes in the electrode materials of Lithium-ion batteries during the charge and discharge process. These ultrathin sensors are built on a polyimide substrate which can enable direct integration between cells without compromising safety or cell cooling design. Leveraging the sensor design and fabrication process used to create inductive coil eddy current (EC) sensors for crack detection, these sensors were characterized on three Panasonic 5 A-h cells showing the capability to measure expansion of Li-ion batteries. By sensing the intercalation effects, which cause cell expansion, improvements in estimation of SOH and SOC can be enabled through the use of physics-based battery models, which combine the thermal, mechanical, and electrochemical aspects of its operation.

Funder

Advanced Research Projects Agency

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3