Compact Modeling of Forced Flow in Longitudinal Fin Heat Sinks With Tip Bypass

Author:

Coetzer C. B.1,Visser J. A.1

Affiliation:

1. Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria, 0002, South Africa

Abstract

This paper introduces a compact model to predict the interfin velocity and the resulting pressure drop across a longitudinal fin heat sink with tip bypass. The compact model is based on results obtained from a comprehensive study into the behavior of both laminar and turbulent flow in longitudinal fin heat sinks with tip bypass using CFD analysis. The new compact flow prediction model is critically compared to existing compact models as well as to the results obtained from the CFD simulations. The results indicate that the new compact model shows at least a 4.5% improvement in accuracy predicting the pressure drop over a wide range of heat sink geometries and Reynolds numbers simulated. The improved accuracy in velocity distribution between the fins also increases the accuracy of the calculated heat transfer coefficients applied to the heat sinks.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference14 articles.

1. Gauche, P., Coetzer, C. B., and Visser, J. A., 1998, “Characteristics of heat sink flow bypass for thermal modelling,” Proc., 5th Int. Conf. For Advanced Computational Methods in Heat Transfer, Poland, pp. 307–316.

2. Obinelo, I. F., 1997, “Characterization of thermal and hydraulic performance of longitudinal fin heat sinks for system level modelling using CFD methods,” ASME.

3. Gavali, S., Patankar, S., 1993, “Effect of heat sink on forced convection cooling of electronic components: A numerical study,” Advances in Electronic Packaging, ASME, EEP-Vol. 4-2.

4. Bar-Cohen, A., 1997, “Air-Cooled heat sinks–Trends and future directions,” Advances in Electronics Packaging, ASME, EEP-Vol. 19-2.

5. Butterbaugh, M. A., and Kang, S. S., 1995, “Effect of airflow bypass on the performance of heat sinks in electronic cooling,” Advances in Electronic Packaging, ASME, EEP-Vol. 10-2.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3