A Force Control Joint for Robot–Environment Contact Application

Author:

Wang Qilong1,Wang Wei1,Ding Xilun1,Yun Chao1

Affiliation:

1. Robotics Institute, School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China e-mail:

Abstract

Accurate and robust force control is still a great challenge for robot–environment contact applications, such as in situ repair, polishing, and assembly. To tackle this problem, this paper proposes a force control joint with a parallel configuration, including two identical four-bar linkages driven by linear springs to push up the output end of the joint, and a parallel-connected pneumatic artificial muscle (PAM) to pull down its output end. In the new design, the link length of the linkages will be optimized to make the difference between the profile of the linkage and that of PAM constant within the limits of the joint given the force–displacement profile of PAM at a certain level of its input pressure. Furthermore, PAM's nonlinear hysteresis effect, which is believed to limit the accuracy of the joint's force control, will be represented by a new dynamics model that is to be developed from the classical Bouc–Wen (BW) hysteresis model. Simulation tests are then conducted to reveal that the adoption of the PAM hysteresis model yields improved accuracy of force control, and a series of curve trajectory tracking experiments are performed on a six-joint universal industrial robot to verify that the parallel force control joint is capable to enhance force control accuracy for robot contact applications.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3