Force Measurements of the Flow Around Arrays of Three and Four Columns With Different Geometry Sections, Spacing Ratios, and Incidence Angles

Author:

Gonçalves Rodolfo Trentin1,Hirabayashi Shinichiro2,Vaz Guilherme3,Suzuki Hideyuki1

Affiliation:

1. OSPL—Ocean Spacing Planning Laboratory, Department of Systems Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

2. OSPL—Ocean Spacing Planning Laboratory, Department of Ocean Technology, Policy, and Environment, School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa-shi, Chiba 277-8561, Japan

3. Department of Research & Development, WavEC—Offshore Renewables, R. Dom Jerónimo Osório 11, Lisbon 1400-119, Portugal

Abstract

Abstract An experimental campaign for the flow around a stationary array of three and four columns with low aspect ratio, H/L = 1.5, piercing the water free surface, was carried out in a towing tank. These numbers of columns correspond to typical multi-column offshore systems, such as semi-submersibles (SS), tension leg platforms (TLPs), and floating offshore wind turbines (FOWTs). Three parameters were investigated: the spacing ratio between column centers (from two up to four characteristic lengths), current incidence angles, and column section geometries (circular, square, and diamond). The Reynolds number of the experiments was 100,000. Forces were measured in each column using a three degrees-of-freedom load cell, and results of lift and drag forces were presented for each column separately and the whole system. The results of mean and standard deviation of forces were assessed using a statistical uncertainty analysis procedure for finite length measurements’ signals. This methodology not only assesses the quality of the experimental data but also facilitates validation of numerical tools. The objectives of the current work were therefore manifold: to better understand the influence of the relative position, shape, and incidence angle on multi-column offshore structures; to create a reliable database for computational fluid dynamics (CFD) validation; and to prepare the path to flow-induced motions (FIMs) experimental and numerical work of free-moving multi-column offshore systems.

Funder

CNPq

Japan Society Promotion of Science

JSPS

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference57 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3