Two- and Three-Dimensional Simulation of Sound Attenuation by Cylinder Arrays

Author:

Zhang Junjian1,Zheng Z. Charlie2,Ke Guoyi3

Affiliation:

1. University of Kansas, 2120 Learned Hall, 1530 W. 15th Street, Lawrence, KS 66045

2. Utah State University, 4130 Old Main Hill, Logan, UT 84322

3. Department of Mathematics and Physical Sciences, Louisiana State University of Alexandria, 8100 Highway 71 South, Alexandria, LA 71302

Abstract

Abstract A finite-difference time-domain (FDTD) simulation coupled with an immersed-boundary method is used to investigate sound attenuation through both two-dimensional (2D) and three-dimensional (3D) cylinder arrays. The focus is on sound attenuation behaviors near Bragg’s bandgap frequencies for periodic structures. Both 2D and 3D simulations show that the finite cylinder arrays produce significant sound attenuation near the bandgap frequencies, with more attenuation effects in the 2D cylinder arrays because of the uniformity of sound source and neglected structure diffraction in the third dimension. When extended to 3D simulation, which can accommodate physically realistic conditions, sound attenuation near Bragg’s frequencies is reduced in comparison with 2D results. The 3D simulation also reaches a better agreement when comparing with the measurement data from the literature. Results and discussions on arrangement of cylinder arrays to achieve better sound attenuation effects are also presented.

Funder

US Army

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3