Air Bearing Dynamics of Sub-Ambient Pressure Sliders During Dynamic Unload

Author:

Hu Yong1,Jones Paul M.2,Li Kangjie2

Affiliation:

1. Quinta Corporation, 1870 Lundy Avenue, San Jose, CA 95131-1826

2. Iomega Corporation, 800 Tasman Drive, Milpitas, CA 95035

Abstract

The increasing effort to use sub-ambient pressure air bearing sliders for dynamic load/unload applications in magnetic hard disk drives requires desirable air bearing characteristics during the dynamic unload event. This paper establishes air bearing design criteria for achieving a smooth head unload performance, through a correlation study between the modeled unloading air bearing dynamics of two 30 percent proximity recording sub-ambient pressure sliders and motion sequence of the same sliders by a high-speed video camera. It is shown that the air bearing lifting force quickly responds to changes in fly height and pitch, while the suction force is relatively resistant to changes in fly height, but somewhat more sensitive to changes in pitch. This unique distinction results in different decreasing rates between the air bearing lifting and suction forces during the unload process, creating a strong dependence of the unloading characteristics on the location of the suction cavities. Both the modeled unloading air bearing dynamics and experimentally recorded motion sequence illustrate that a toward-trailing-edge located suction force acts to pitch the slider up, while the moment produced by a toward-leading-edge located suction force induces a negative pitch motion, resulting in an excessive flexure deformation and dimple separation. Therefore, placing the suction cavities towards the trailing edge offers a reliable unloading performance for the sub-ambient pressure air bearing sliders.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3