Effects of Design Parameters on Bouncing Vibrations of a Single-DOF Contact Slider and Necessary Design Conditions for Perfect Contact Sliding

Author:

Ono Kyosuke1,lida Kohei2,Takahashi Kan2

Affiliation:

1. Department of Mechanical Engineering and Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152, Japan

2. Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152, Japan

Abstract

The general characteristics of the bouncing vibrations of a IDOF contact slider model over the surface of a harmonic wavy disk were studied both by computer simulation and theoretical analysis. The necessary design conditions for a contact slider and the surface of a disk were discussed in terms of perfect contact sliding and wear durability. It was found that the bouncing vibrations change with the amount of waviness amplitude A(fr) at the contact resonant frequency fr(=(1/2π)kc/m) relative to static penetration depth δ, or fr relative to limiting critical frequency fcl, above which the downward acceleration of the surface of a disk is larger than that of a slider due to slider load. When the contact stiffness is large enough so that δ < A(fr) (fcl < fr), the slider bounces with a large amplitude similar to an elastic impact in a wide frequency range. When the contact stiffness is small enough so that δ > A(fr) (fcl > fr), bouncing vibrations occur near the contact resonance, similar to the resonance of a nonlinear soft spring system. Here, the bouncing vibration can be completely eliminatedby increasing the contact damping ratio and decreasing the slider mass and the waviness amplitude.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3