Theoretical Prediction of Ramp Loading/Unloading Process in Hard Disk Drives

Author:

Peng J. P.1

Affiliation:

1. Western Digital Corporation, 5863 Rue Ferrari, San Jose, CA 95138

Abstract

Air bearing slider dynamic performance during the ramp loading and unloading processes was investigated theoretically in this paper. The air bearing was modeled by the modifiedcompressible Reynolds equation, and it was solved by the finite volume method. Slider dynamic equations were derived in this paper to include the ramp loading/unloading mechanism. These two sets of coupled equations were solved iteratively. Both Tripad and negative pressure air bearing (NPAB) were included in the analysis. Effects of loading/unloading velocity, disk rotational speed, as well as suspension flexure stiffness, were investigated. Slider-disk impact will occur during the Tripad loading process, especially at high loading velocity. On the other hand, this impact can be avoided for an NPAB at loading velocity up to 200 mm/s. However, an NPAB requires a longer unloading time due to its suction force. This unloading process is further delayed if a soft flexure is combined with an NPAB.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3