Dynamics of Multipoint Thread Turning—Part II: Application to Thin-Walled Oil Pipes

Author:

Khoshdarregi Mohammad R.1,Altintas Yusuf2

Affiliation:

1. Mem. ASME Intelligent Digital Manufacturing Laboratory (IDML), Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada e-mail:

2. Professor Fellow ASME Manufacturing Automation Laboratory (MAL), Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada e-mail:

Abstract

This paper extends the general threading model developed in Part I to the case of thin-walled workpieces. Structural behavior of a cylindrical shell is dominated by the low-damped flexural modes. Due to the circumferential patterns of the shell modes, the cutting forces result in different instantaneous displacements around the circumference of the workpiece. The residual shell vibrations can affect the chip thickness when the corresponding point arrives at the cutting region. In this paper, the workpiece surface is discretized, and the instantaneous shell deformations due to the cutting forces are evaluated. The dynamic equation of motion for threading thin-walled workpieces is derived, and the stability and surface location errors are analyzed. The proposed threading model is validated experimentally on real-scale oil pipes for different pass numbers and infeed values. Sample approaches for chatter suppression are demonstrated experimentally.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3