Thermally Induced Oscillatory Two-Phase Flow in a Mini-Channel: Towards Understanding Pulsating Heat Pipes

Author:

Das Shyama Prasad1,Lefe`vre Fre´de´ric1,Khandekar Sameer2,Bonjour Jocelyn1

Affiliation:

1. Centre de Thermique de Lyon, Villeurbanne, France

2. Indian Institute of Technology Kanpur, Kanpur, UP, India

Abstract

Research on Pulsating Heat Pipes (PHP) has received substantial attention in the recent past, due to its unique operating characteristics and potential applications in many passive heat transport situations. Reliable design tools can only be formulated if the nuances of its operating principles are well understood; at present, this is rather insufficient for framing comprehensive models. In this context, this paper reports experimental data on self-sustained thermally driven oscillations in a 2.0 mm ID capillary tube sub-system, consisting of only one vapor slug and one liquid plug (‘unit-cell’). Understanding such a sub-system/‘unit-cell’ is vital, as it represents a primary unit of a multi-turn PHP. Experiments have been performed with two fluids, i.e. Pentane (BP = 36.1°C) and Methanol (BP = 64.7°C) at different evaporator (40°C to 65°C) and condenser temperatures (−5°C to 15°C) respectively. High speed videography and spectrum analysis reveals that self-sustained thermally driven flow oscillations are observed for both fluids, albeit the dominant periodicity is different. Oscillation frequencies vary from 1.5 Hz to 4.2 Hz approximately, depending on the fluid, operating pressure and temperature. Increasing the difference of temperature between the evaporator and condenser sections leads to enhanced driving force for creating flow oscillations. The resulting phase velocities cause interfacial instabilities, resulting in the formation of secondary bubbles which break-off from the main meniscus. Results of this study can be compared to numerical models and will be useful to understand the physics of multi-turn PHPs.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3