Bayesian Approach for Structural Reliability Analysis and Optimization Using the Kriging Dimension Reduction Method

Author:

Choi Jooho1,An Dawn1,Won Junho1

Affiliation:

1. School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-City, Gyeonggi-do, 412-791, Korea

Abstract

An efficient method for a structural reliability analysis is proposed under the Bayesian framework, which can deal with the epistemic uncertainty arising from a limited amount of data. Until recently, conventional reliability analyses dealt mostly with the aleatory uncertainty, which is related to the inherent physical randomness and its statistical properties are completely known. In reality, however, epistemic uncertainties are prevalent, which makes the existing methods less useful. In the Bayesian approach, the probability itself is treated as a random variable of a beta distribution conditional on the provided data, which is determined by conducting a double loop of reliability analyses. The Kriging dimension reduction method is employed to promote efficient implementation of the reliability analysis, which can construct the PDF of the limit state function with favorable accuracy using a small number of analyses. Mathematical examples are used to demonstrate the proposed method. An engineering design problem is also addressed, which is to find an optimum design of a pigtail spring in a vehicle suspension, taking material uncertainty due to limited test data into account.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3