Computationally Efficient Particle Release Map Determination for Direct Tumor-Targeting in a Representative Hepatic Artery System

Author:

Childress E. M.1,Kleinstreuer C.123

Affiliation:

1. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695

2. Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695

3. University of North Carolina at Chapel Hill, Chapel Hill, NC 27514 e-mail:

Abstract

Implementation of a novel direct tumor-targeting technique requires a computer modeling stage to generate particle release maps (PRMs) which allow for optimal catheter positioning and selection of best injection intervals for drug-particles. This simulation task for a patient-specific PRM may require excessive computational resources and a relatively long turn-around time for a fully transient analysis. Hence, steady-state conditions were sought which generates PRMs equivalent to the pulsatile arterial flow environment. Fluid-particle transport in a representative hepatic artery system was simulated under fully transient and steady-state flow conditions and their corresponding PRMs were analyzed and compared. Comparisons of the transient PRMs from ten equal intervals of the cardiac pulse revealed that the diastolic phase produced relatively constant PRMs due to its semisteady flow conditions. Furthermore, steady-state PRMs, which best matched the transient particle release maps, were found for each interval and over the entire cardiac pulse. From these comparisons, the flow rate and outlet pressure differences proved to be important parameters for estimating the PRMs. The computational times of the fully transient and steady simulations differed greatly, i.e., about 10 days versus 0.5 to 1 h, respectively. The time-averaged scenario may provide the best steady conditions for estimating the transient particle release maps. However, given the considerable changes in the PRMs due to the accelerating and decelerating phases of the cardiac cycle, it may be better to model several steady scenarios, which encompass the wide range of flows and pressures experienced by the arterial system in order to observe how the PRMs may change throughout the pulse. While adding more computation time, this method is still significantly faster than running the full transient case. Finally, while the best steady PRMs provide a qualitative guide for best catheter placement, the final injection position could be adjusted in vivo using biodegradable mock-spheres to ensure that patient-specific optimal tumor-targeting is achieved. In general, the methodology described could generate computationally very efficient and sufficiently accurate solutions for the transient fluid-particle dynamics problem. However, future work should test this methodology in patient-specific geometries subject to various flow waveforms.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3