Low Cycle Fatigue of Subsea Mechanically Lined Pipeline With Liner Imperfections

Author:

Pépin Aurélien1,Tkaczyk Tomasz1,O’Dowd Noel2,Nikbin Kamran3

Affiliation:

1. TechnipFMC, Westhill, UK

2. University of Limerick, Limerick, Ireland

3. Imperial College, London, UK

Abstract

There is an ever-increasing demand for subsea transport of corrosive constituents which requires the use of corrosion resistant pipelines. This has generated interest in mechanically lined pipe (MLP) which consists of carbon steel pipe lined with a thin layer of corrosion resistant alloy (CRA), typically stainless steel. The CRA liner is adhered to the backing pipe by means of an interference fit. MLPs have been traditionally installed subsea using low strain methods such as towing, S-lay or J-lay. More recently, the efficient reel-lay method, typically used for pipelines up to 18” (457.2 mm) in diameter, has also been considered. To prevent damage to the MLP during high strain bending (i.e. wrinkling of CRA the liner) and thus allow reel-lay installation, TechnipFMC has qualified reeling of MLPs at ambient and elevated pressures. The ambient reeling approach, where the liner thickness is increased to prevent wrinkling during reeling, is appropriate for smaller diameter MLPs. For larger pipelines, it is generally more cost-effective to pressurise the MLP during reeling. Concerns have been expressed that liner imperfections such as small dents or wrinkles, introduced during manufacturing, installation or service, may compromise the integrity of the MLP subjected to high in-service cyclic loading. Therefore, this study was undertaken to examine the criticality of such flaws and determine the low cycle fatigue endurance of reeled MLPs with imperfections. First, a numerical study was undertaken to estimate in-service stress/strain ranges in the MLPs with liner flaws. Subsequently, small scale tests were carried out to quantify the fatigue performance of such MLPs. The obtained results confirmed that there is a negligible risk of failure of MLP flowlines due to crack initiation at liner imperfections and subsequent breach of the CRA layer, even for pipelines subjected to very severe inservice cyclic loading.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ECA of Girth Welds for Deepwater HPHT Flowline with Lateral Buckle Mitigation;Day 1 Tue, October 24, 2023;2023-10-17

2. Engineering Critical Assessment of Embedded Flaws in Undermatch Pipeline Girth Welds;International Journal of Offshore and Polar Engineering;2022-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3