Natural Convection From a Column of Flush Heat Sources in a Vertical Channel in Water

Author:

Joshi Y.1,Knight D. L.2

Affiliation:

1. Department of Mechanical Engineering, Naval Postgraduate School, Monterey, CA 93943

2. United States Navy

Abstract

Natural convection from a single column of eight in-line, rectangular heat sources flush mounted on one wall of a vertical channel immersed in water was examined. Input power to each heating element was varied from 0.2–2.0 W for channel spacings in the range of 1.5–15.0 mm, as well as with the shroud removed. Flow visualization in two mutually perpendicular vertical planes was carried out both with and without the shroud for each power level. Component temperature measurements were made using thermocouples embedded within the substrate. By suitably accounting for the increasing convected energy downstream, a single heat transfer correlation was obtained for all channel spacings larger than 3 mm. For smaller channel spacings, the component center temperatures increased substantially above the correlation. To investigate the effect of heater spacing, temperature measurements in the absence of shroud were also made with only selected components powered. As the spacing between successive heated components was increased to twice of the fully heated configuration, the upstream effects on component heat transfer become negligible. Further increase in spacing resulted in a weak enhancement in heat transfer downstream. Comparison of the present data with existing experimental studies and new computations revealed significant influence of the heater and substrate material thermal properties on the transport.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3