Turbulent Convection in a Czochralski Silicon Melt

Author:

Zhang T.1,Ladeinde F.1,Prasad V.1

Affiliation:

1. Consortium for Crystal Growth Research, State University of New York, Stony Brook, NY 11794-2300

Abstract

The individual and combined effects of buoyancy, crystal rotation, and crucible rotation are reported in this paper for axisymmetrically averaged melt convection in a large Czochralski crystal growth system for silicon. These body force effects are characterized by the respective parameters of Grashof number, Gr, rotational Reynolds number, Rer, and the Marangoni number, Ma. The range investigated consists of 108 ≤ Gr ≤ 1010, 103 ≤ Re ≤ 3 × 104, and 103 ≤ Ma ≤ 104, which is appropriate for the real Czochralski system. The studies are based on a multizone, adaptive, finite volume calculation. Validations of the numerical procedures are presented, including a grid convergence study. The effects of buoyancy and rotation on melt convection are discussed in detail. When the crystal and crucible both rotate at the same speed, but in opposite directions, without buoyancy, the effect of the crucible rotation is stronger. The rotation induces turbulence, contrary to what the literature suggests. For the combined effects, the intensity of turbulence and the average Nusselt number at the crucible wall are largest when buoyancy is slightly dominant over rotation. High rotation rates generate temperature oscillations in the presence of high Grashof numbers. Because of the consequence of oscillation for crystal quality, a dynamic adjustment of the rotation rate might be necessary in order to obtain desirable growth conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference36 articles.

1. Abe K. , and KondohT., 1995, “A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I. Flow Field Calculations,” Int. J. Heat Mass Transfer, Vol. 38, pp. 1467–1481.

2. Anselmo A. , PrasadV., KoziolJ., and GuptaK. P., 1993, “Oscillatory Convection in Low Aspect Ratio Czochralski Melts,” J. Crystal Growth, Vol. 134, pp. 116–139.

3. Cheesewright, R., King, K. J., and Ziai, S., 1986, “Experimental Data for the Validation of Computer Codes for the Prediction of Two-Dimensional Buoyant Cavity Flows,” Significant Questions in Buoyancy Affected Enclosure or Cavity Flows, ASME, New York, pp. 75–81.

4. de Vahl Davis G. , 1983, “Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution,” Int. J. Heat Mass Transfer, Vol. 3, pp. 249–264.

5. Dupret, F., Van den Bogaet, N., Assaker, R., and Regnier, V., 1998, “Mathematical Modeling of the Growth of Large Diameter Czochralski Silicon Crystals Considering Melt Dynamics,” Proc. 8th Int. Symp, on Silicon Materials Sci. and Tech., H. R. Huff, U. Go¨sele, and H. Tsuya, eds., Electronic Division of the Electrochemical Society, Proc. Vol. 98–1, pp. 396–410.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3