Process Robustness of Hot Embossing Microfluidic Devices

Author:

Eusner Thor1,Hale Melinda1,Hardt David E.1

Affiliation:

1. Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

Polymeric substrates have significant advantages over silicon and glass for use in microfluidics. However, before polymer microfluidic devices can be mass produced, it must be shown that the manufacturing method used to create these devices is robust and repeatable. For this paper, a polymer manufacturing process, hot embossing, was used to produce microsized features in polymethylmethacrylate (PMMA) chips. A design of experiments that varied two factors during the hot embossing process (temperature and pressure), was conducted to determine the robustness of hot embossing microsized channels in PMMA. The channel height and width were measured at three sites on each chip, and the results were analyzed in two ways: response surface modeling (RSM) and nested variance analysis. For the RSM analysis, two separate ANOVA tests and regressions were performed on both channel width and channel height to obtain the response surface models between temperature, pressure and the channel width and height. Furthermore, the variance of channel width and height at each design point was determined and then two ANOVA tests and two separate regressions were performed to obtain the response surface models between temperature, pressure and the variance of channel height and channel width. This analysis was used to determine if hot embossing microfluidic devices is a robust process capable of producing quality parts at different operating conditions. The nested variance analysis was used to determine the primary source of the variation in channel height and width. For the nested variance analysis, two separate calculations were performed in order to determine whether the variance of channel width and height is mostly caused by within-chip variance or chip-to-chip variance. The analysis showed that the channel widths and heights were statistically equal across the four different operating points used (the low-temperature, low-pressure point was omitted). The variance of channel width and the variance of channel height remained constant in the desired operating region. Based on this analysis, it was concluded that hot embossing is a robust process for features on the order of 50 μm. Furthermore, the nested variance analysis showed that the variance of channel width and height is mostly caused by site-to-site measurements on a chip rather than between-chip variance. Therefore, it was determined that hot embossing microfluidic devices are repeatable and consistent from chip-to-chip.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Micro-electro-mechanical acoustofluidic mixing system: A response surface-metaheuristic machine learning fusion framework;Expert Systems with Applications;2024-09

2. Microfluidics as a Tool for the Synthesis of Advanced Drug Delivery Systems;Nano- and Microfabrication Techniques in Drug Delivery;2023

3. Microfluidic droplet formation in co-flow devices fabricated by micro 3D printing;Journal of Food Engineering;2021-02

4. Lab-on-a-chip devices—Advancement in the designing of biosensors;Functionalized Nanomaterials Based Devices for Environmental Applications;2021

5. Nuts and Bolts: Microfluidics for the Production of Biomaterials;Advanced Materials Technologies;2019-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3