Optimization of a Tip Appendage for the Control of Tip Leakage Vortices in Axial Flow Fans

Author:

Meyer Thomas O.1,van der Spuy Sybrand J.1,Meyer Christiaan J.1,Corsini Alessandro2

Affiliation:

1. Department of Mechanical and Mechatronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa

2. Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma “La Sapienza, ”Rome I00184, Italy

Abstract

Abstract This paper presents the numerical optimization of a tip appendage design for the passive control of tip leakage vortices in subsonic axial flow cooling fans. The studied class of fan was designed in the conventional manner without the consideration of tip clearance effects. As such, the objective of this investigation is the improvement of the aerodynamic performance characteristics of the datum fan through consideration of the blade tip geometry. Based on previous studies involving fan performance enhancement using various tip end-plate configurations, the most promising end-plate geometry which is found to best improve the fan’s performance characteristics is selected for further development through optimization. Before the optimization process can begin, initialization of the chosen end-plate’s design space using the design of experiments (DoEs) technique is performed. Formulation of the response surface is based on a multi-objective multi-point objective function which considers the fan’s various performance metrics. Considering the optimization process, the design and analysis of computer aided experiments method is used in the development of the Kriging-based surrogate model’s database. The resulting database is coupled with an efficient global optimization algorithm which completes the workflow of the optimization routine. The Pareto-front of non-dominated solutions is used to guide the optimal design selection, on which the experimental evaluations are based. The experimental results of the optimized design indicate improved fan performance characteristics at greater than peak efficiency flowrates. This design is found to increase the datum fan’s design point performance characteristics by a value of 32.90% in total-to-static pressure rise and a 7.66 percentage point increase in total-to-static efficiency at the fan’s design speed of 722 rpm.

Funder

Universiteit Stellenbosch

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3