Association of Collagen, Elastin, Glycosaminoglycans, and Macrophages With Tissue Ultimate Material Strength and Stretch in Human Thoracic Aortic Aneurysms: A Uniaxial Tension Study

Author:

Tokgoz Aziz1,Wang Shuo2,Sastry Priya3,Sun Chang4,Figg Nichola L.5,Huang Yuan6,Bennett Martin R.3,Sinha Sanjay3,Gillard Jonathan H.4,Sutcliffe Michael P. F.7,Teng Zhongzhao8

Affiliation:

1. Department of Engineering, University of Cambridge, Cambridge CB2 1TN, UK

2. Department of Radiology, University of Cambridge, Cambridge CB2 1TN, UK; Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200437, China; Shanghai Key Laboratory of MICCAI, Shanghai, China

3. Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK

4. Department of Radiology, University of Cambridge, Cambridge CB2 1TN, UK

5. Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200437, China

6. Department of Radiology, University of Cambridge, Cambridge CB2 1TN, UK; Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging, University of Cambridge, Cambridge CB2 1TN, UK

7. Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

8. Department of Engineering, University of Cambridge, Cambridge CB2 1TN, UK; Department of Radiology, University of Cambridge, Level 5, Box 218, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China; Nanjing Jingsan Medical Science and Technology, Ltd., Jiangsu, China

Abstract

Abstract Fiber structures and pathological features, e.g., inflammation and glycosaminoglycan (GAG) deposition, are the primary determinants of aortic mechanical properties which are associated with the development of an aneurysm. This study is designed to quantify the association of tissue ultimate strength and extensibility with the structural percentage of different components, in particular, GAG, and local fiber orientation. Thoracic aortic aneurysm (TAA) tissues from eight patients were collected. Ninety-six tissue strips of thickened intima, media, and adventitia were prepared for uni-extension tests and histopathological examination. Area ratios of collagen, elastin, macrophage and GAG, and collagen fiber dispersion were quantified. Collagen, elastin, and GAG were layer-dependent and the inflammatory burden in all layers was low. The local GAG ratio was negatively associated with the collagen ratio (r2 = 0.173, p < 0.05), but positively with elastin (r2 = 0.037, p < 0.05). Higher GAG deposition resulted in larger local collagen fiber dispersion in the media and adventitia, but not in the intima. The ultimate stretch in both axial and circumferential directions was exclusively associated with elastin ratio (axial: r2 = 0.186, p = 0.04; circumferential: r2 = 0.175, p = 0.04). Multivariate analysis showed that collagen and GAG contents were both associated with ultimate strength in the circumferential direction, but not with the axial direction (collagen: slope = 27.3, GAG: slope = −18.4, r2 = 0.438, p = 0.002). GAG may play important roles in TAA material strength. Their deposition was found to be associated positively with the local collagen fiber dispersion and negatively with ultimate strength in the circumferential direction.

Funder

British Heart Foundation

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3