A Detailed Loss Analysis Methodology for Centrifugal Compressors

Author:

Zhang Luying1,Kritioti Loukia1,Wang Peng1,Zhang Jiangnan1,Zangeneh Mehrdad2

Affiliation:

1. Advanced Design Technology, 30 Millbank, Westminster, London SW1P 4DU, UK

2. Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK

Abstract

Abstract A deep understanding of loss mechanisms inside a turbomachine is crucial for the design and analysis work. By quantifying the various losses generated from different flow mechanisms, a targeted optimization can be carried out on the blading design. In this paper, an evaluation method for computational fluid dynamics (CFD) simulations has been developed to quantify the loss generation based on entropy production in the flow field. A breakdown of losses caused by different mechanisms (such as skin friction, secondary flow, tip clearance vortex, and shock waves) is achieved by separating the flow field into different zones. Each zone is defined by the flow physics rather than by geometrical locations or empirical correlations, which makes the method a more general approach and applicable to different machine types. The method has been applied to both subsonic and transonic centrifugal compressors, where internal flow is complex due to the Coriolis acceleration and the curvature effect. An evaluation of loss decomposition is obtained at various operational conditions. The impact of design modification is also assessed by applying the same analysis to an optimized design.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3