Thermodynamic, Environmental and Economic Assessment of Exhaust Gas Recirculation for NOx Reduction in Gas Turbine Based Compressor Station

Author:

Botros K. K.1,Price G. R.1,Kibrya G.2

Affiliation:

1. NOVA Research & Technology Corporation, Calgary, AB, Canada

2. TransCanada Pipelines Ltd., Calgary, AB, Canada

Abstract

A thermodynamic, environmental and economic assessment of an exhaust gas recirculation (EGR) system for NOx reduction has been carried out on an RB211 gas turbine based compressor station. The configured system was evaluated using a commercial process simulation software ASPEN PLUS® for the EGR process, along with a one dimensional model for the prediction of NOx. The assessment was focused on a realistic system of 20% gas recirculation cooled 300 °C with an aerial cooler. Detailed economic analysis based on present value cost per unit mechanical energy (kWh), showed that there is no economic advantage in implementing an EGR system in an existing gas turbine based station. Although the environmental cost was lower with the EGR system, it was offset by the cost of the EGR system itself combined with the additional incremental cost of fuel due to the decrease in the thermal efficiency.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3