Be´zier Curves on Riemannian Manifolds and Lie Groups with Kinematics Applications

Author:

Park F. C.1,Ravani B.2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA

2. Department of Mechanical and Aeronautical Engineering, University of California, Davis, CA

Abstract

In this article we generalize the concept of Be´zier curves to curved spaces, and illustrate this generalization with an application in kinematics. We show how De Casteljau’s algorithm for constructing Be´zier curves can be extended in a natural way to Riemannian manifolds. We then consider a special class of Riemannian manifold, the Lie groups. Because of their group structure Lie groups admit an elegant, efficient recursive algorithm for constructing Be´zier curves. Spatial displacements of a rigid body also form a Lie group, and can therefore be interpolated (in the Be´zier sense) using this recursive algorithm. We apply this alogorithm to the kinematic problem of trajectory generation or motion interpolation for a moving rigid body. The orientation trajectory of motions generated in this way have the important property of being invariant with respect to choices of inertial and body-fixed reference frames.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference14 articles.

1. Belinfante, J. G., and Kolman, B., 1972, A Survey of Lie Groups and Lie Algebras with Applications and Computational Methods, Siam, Philadelphia.

2. Be´zier, P., 1986, The Mathematical Basis of the UNISURF CAD System, Butterworths, London.

3. Bottema, O., and Roth, B., 1987, Theoretical Kinematics, Dover, New York.

4. Chevalley, C., 1946, Theory of Lie Groups, Princeton University Press.

5. De Casteljau, F., 1963, “Outillage me´thodes calcul.,” Andre´ Citroe¨n Automobiles SA, Paris.

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Splines on manifolds: A survey;Computer Aided Geometric Design;2024-07

2. Hermite subdivision schemes for manifold-valued Hermite data;Computer Aided Geometric Design;2024-06

3. Nonlinear Weighted Subdivision Schemes;Communications in Mathematics and Statistics;2024-05-25

4. De Casteljau's algorithm in geometric data analysis: Theory and application;Computer Aided Geometric Design;2024-05

5. An objective FE-formulation for Cosserat rods based on the spherical Bézier interpolation;Computer Methods in Applied Mechanics and Engineering;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3