Design, Construction, and Analysis of a Passive Indirect Solar Dryer With Chimney

Author:

Tedesco Felipe Cichetto1,Bühler Alexandre José1,Wortmann Sérgio1

Affiliation:

1. IFRS, Federal Institute of Education, Science and Technology of Rio Grande do Sul, Farroupilha 95174-274, Brazil

Abstract

The growing demand for alternative technologies, of clean and sustainable nature, has fostered the development and improvement of equipment that uses solar energy for the dehydration of seeds and fruits. Such equipment has been used worldwide for hundreds of years; however, it remains uncommon in Serra Gaúcha, a region of great production of grapes and apples for natura consumption in the state of Rio Grande do Sul—Brazil. In order to investigate the economic and technical viability of solar dryers in the Serra Gaúcha, this work has as target the design, simulation, construction, and experimental analysis of an Indirect Passive Solar Dryer with Chimney. The prototype, divided into three parts: solar collector, dehydration chamber, and chimney, was built prioritizing materials of low cost, but that did not compromise its performance. The device was submitted to experiments, which observed: solar collector behavior very close to the simulated one; obtaining a coefficient of performance of 87% in the equipment; satisfactory rise in temperature at the collector outlet comparing to its inlet; and dehydration of apples with a reduction of 89% in mass with 32.78 MJ of energy delivered to the system. The prototype payback period was estimated in two years.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference15 articles.

1. A Review of Solar Dryers Developed for Grape Drying;Sol. Energy,2009

2. A Review of Solar Drying Technologies;Renewable Sustainable Energy Rev.,2012

3. Solar-Energy Drying Systems: A Review;Renewable Sustainable Energy Rev.,2009

4. Solar drying

5. A Review on Solar Dehydration (dryer) System;Int. J. Adv. Res. Sci. Eng.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3