Modeling and Control of a Diesel Engine With Regenerative Hydraulic-Assisted Turbocharger
Affiliation:
1. Mechanical Engineering, Michigan State University, East Lansing, MI 48824 e-mail: 2. Fellow ASME Mechanical Engineering, Michigan State University, East Lansing, MI 48824 e-mail:
Abstract
Diesel engines are of great challenges due to stringent emission and fuel economy requirements. Compared with the conventional turbocharger system, regenerative assisted system provides additional degrees-of-freedom for turbocharger speed control. Hence, it significantly improves control capability for exhaust-gas-recirculation (EGR) and boost pressure. This paper focuses on modeling and control of a diesel engine air-path system equipped with an EGR subsystem and a variable geometry turbocharger (VGT) coupled with a regenerative hydraulic-assisted turbocharger (RHAT). The challenges lie in the inherent coupling among EGR, turbocharger performance, and high nonlinearity of the engine air-path system. A control-oriented nonlinear RHAT system model is developed; and a linear quadratic (LQ) control design approach is proposed in this paper to regulate the EGR mass flow rate and boost pressure simultaneously and the resulting closed-loop system performance can be tuned by properly selecting the LQ control weighting matrices. Multiple LQ controllers with integral action are designed based on the linearized system models over a gridded engine operational map and the final gain-scheduling controller for a given engine operational condition is obtained by interpreting the neighboring LQ controllers. The gain-scheduling LQ controllers for both traditional VGT-EGR and VGT-EGR-RHAT systems are compared with the in-house baseline controller, consisting of two single-input and single-output (SISO) controllers, against the nonlinear plant. The simulation results show that the designed multi-input and multi-output LQ gain-scheduling controller is able to manage the performance trade-offs between EGR mass flow and boost pressure tracking. With the additional assisted and regenerative power available on the turbocharger shaft for the RHAT system, engine transient boost pressure performance can be significantly improved without compromising the EGR tracking performance, compared with the baseline control.
Funder
Ford Motor Company
Publisher
ASME International
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Reference20 articles.
1. Zeng, T., Upadhyay, D., Sun, H., Curtis, E., and Zhu, G. G., 2017, “Regenerative Hydraulic Assisted Turbocharger,” ASME Paper No. GT2017-64927. 10.1115/GT2017-64927 2. Issues in Modelling and Control of Intake Flow in Variable Geometry Turbocharged Engines,1999 3. Regenerative Assisted Turbocharger System,2014 4. Dekker, H. J., and Sturm, W. L., 1996, “Simulation and Control of a HD Diesel Engine Equipped With New EGR Technology,” SAEPaper No. 960871.10.4271/960871 5. Jankovic, M., and Kolmanovsky, I., 1998, “Robust Nonlinear Controller for Turbocharged Diesel Engines,” American Control Conference (ACC), Philadelphia, PA, June 24–26, pp. 1389–1394.10.1109/ACC.1998.707047
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|