Numerical Simulation of the Flow Pulsations Origin in Cascades of the Rear Blade Rows in a Gas Turbine Axial Compressor Using Low Calorific Fuel

Author:

Cyrus Vaclav1,Polansky Jiri2

Affiliation:

1. AHT Energetics Ltd., Podnikatelska 550, Prague-Bechovice, Prague 19011, Czech Republic

2. West Bohemia University, Universitni 8, Pilsen 30616

Abstract

Fatigue failure of the last three stator rows vanes (S17, EGV1, and EGV2) in the 17 stage gas turbine axial compressor occurred in the power plant where low calorific fuel syngas, was used. Causes of this dangerous phenomenon were flow pulsations with the frequency of 380–400 Hz that were found by the experimental investigation of the duty gas turbine. Mechanism of the flow unsteadiness origin was studied with the help of flow simulations in the 2D stator cascade system. Three numerical experiments were carried out. The first experiment investigated the flow simulation in the stator cascade system with a steady undisturbed inlet flow with increased turbulence intensity. Obtained data did not meet the standards of the actual compressor operations. In the remaining two numerical experiments, a purposely designed rotor cascade was located in front of the stator cascades. Shedding of vortex structures from the cascade profile surfaces at positive incidence angles is responsible for the flow pulsation origin. The interaction of rotor wakes/stator S17 cascade plays an important role in the investigated phenomenon, as follows from CFD data. Aerodynamic loading of both cascades is equal in the second group of numerical experiments. Computed results were in good qualitative agreement with the experimental ones. As the flow in rotor cascade was not separated, owing to the different aerodynamic loading of rotor and stator S17 cascades, the vortices shedding in stator cascade S17 had a significantly higher frequency of f=2200–2300 Hz than in other investigated cases.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3