Fine Tuning of Fuzzy Rule-Base System and Rule Set Reduction Using Statistical Analysis

Author:

Nazir Muhammad Babar1,Wang Shaoping1

Affiliation:

1. Department of Mechatronic, School of Automation Sciences and Electrical Engineering, Beihang University, Beijing 100083, China

Abstract

Learning and tuning of fuzzy rule-based systems is the core issue for linguistic fuzzy modeling. To achieve an accurate linguistic fuzzy model genetic learning of initial rule base is introduced and evolutionary simultaneous tuning of nonlinear scaling factors and fuzzy membership functions (MFs) are employed. Novel evolutionary algorithm is applied for simultaneous optimization process due to its computational efficiency and reliability. To preserve the interpretability issue, linguistic hedges are utilized, which slightly modify the MFs. Interpretability issue is further improved by introducing the statistical based fuzzy rule reduction technique. In this technique, most appropriate rules are selected by computing the activation tendency of each rule. Further, focusing on granularity of partition, linguistic terms for input and output variables are modified and new reduced rule base system is developed. The proposed techniques are applied to nonlinear electrohydraulic servo system. Extensive simulation and experiment results indicate that proposed schemes not only improve the accuracy but also ensure interpretability preservation. Further, controller developed based on proposed schemes sustains the performance under parametric uncertainties and disturbances.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference37 articles.

1. Fuzzy Sets;Zadeh;Inf. Control.

2. Fuzzy Logic Control to be Conventional Method;E.;Energy Convers. Manage.

3. Genetic Tuning of Fuzzy Rule Deep Structures Preserving Interpretability and Its Interaction With Fuzzy Rule Set Reduction;Casillas;IEEE Trans. Fuzzy Syst.

4. Automatic Generation of Fuzzy Rule-Based Models From Data by Genetic Algorithms;Angelov;Inf. Sci. (N.Y.)

5. Fuzzy Rules Generation Using Genetic Algorithms With Self-Adaptive Selection;Cintra

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3