Utilizing Off-Resonance and Dual-Frequency Excitation to Distinguish Attractive and Repulsive Surface Forces in Atomic Force Microscopy

Author:

Dick Andrew J.1,Solares Santiago D.2

Affiliation:

1. Department of Mechanical Engineering and Materials Science, Rice University, 6100 Main Street, Houston, TX 77005-1892

2. Department of Mechanical Engineering, 2181 Glenn L. Martin Hall, University of Maryland, College Park, MD 20742

Abstract

A beam model is developed and discretized to study the dynamic behavior of the cantilever probe of an atomic force microscope. Atomic interaction force models are used with a multimode approximation in order to simulate the probe’s response. The system is excited at two-and-a-half times the fundamental frequency and with a dual-frequency signal consisting of the AFM probe’s fundamental frequency and two-and-a-half times the fundamental frequency. A qualitative change in the response in the form of period doubling is observed for the harmonic off-resonance excitation when significantly influenced by repulsive surface forces. Through the use of dual-frequency excitation, standard response characteristics are maintained, while the inclusion of the off-resonance frequency component results in an identifiable qualitative change in the response. By monitoring specific frequency components, the influence of attractive and repulsive surface forces may be distinguished. This information could then be used to distinguish between imaging regimes when bistability occurs or to operate at the separation distance between surface force regimes to minimize force levels.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3