Measurement of Binder/Active Material Interface Fracture in Rechargeable Batteries and the Effect of Oxide Coating

Author:

Pakhare Akshay S.1,Nadimpalli Siva P.V.1

Affiliation:

1. Michigan State University Department of Mechanical Engineering, , East Lansing, MI 48824

Abstract

Abstract Interface fracture is a critical issue for next-generation rechargeable batteries. The integrity of the binder/active material interface is essential for successful battery operation, and the interface failure is a major capacity fade mechanism. In spite of the importance, no systematic study on understanding/characterization of this issue exists at present. Here, the interface fracture was studied using a model polyvinylidene fluoride (PVdF)/Si system due to its importance in future Li-ion batteries. The interface failure was characterized in terms of critical energy release rate Gc using an experimental technique based on blister test and Michelson interferometry. The effect of the oxide layer on the interface fracture was also quantified. The critical energy release rate Gc of PVdF/Si interface is 0.55 ± 0.14 Jm−2, and the presence of oxide layer at the interface increased the Gc by an order of magnitude higher, i.e., the Gc of PVdF/SiO2 interface is 2.46 ± 0.40 Jm−2. The scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis of the fracture surfaces showed that the crack growth mechanism is adhesive for both interface systems, and the strong adhesion of PVdF to SiO2 surface is attributed to the nature of bonding, i.e., a higher concentration of silanol (Si-OH) group on the SiO2 surface as compared to the Si surface to which PVdF forms a bond with. The experimental methodology proposed here is more general and can be used to study the fracture behavior of interfaces in other electrode systems and with other battery chemistries.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3