Some Experiments With a Supersonic Axial Compressor Stage

Author:

Wennerstrom A. J.1

Affiliation:

1. Aero Propulsion Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, OH

Abstract

Between 1970 and 1974, ten variants of a supersonic axial compressor stage were designed and tested. These included two rotor configurations, three rotor tip clearances, addition of boundary-layer control consisting of vortex generators on both the outer casing and the rotor, and the introduction of slots in the stator vanes. Design performance objectives were a stage total pressure ratio of 3.0 with an isentropic efficiency of 0.82 at a tip speed of 1600 ft/s (488 m/s). The first configuration passed only 70 percent of design flow at design speed, achieving a stage pressure ratio of 2.25 at a peak stage isentropic efficiency of 0.61. The rotor was grossly separated. The tenth variant passed 91.4 percent of design flow at design speed, producing a stage pressure ratio of 3.03 with an isentropic efficiency of 0.75. The rotor achieved a pressure ratio of 3.59 at an efficiency of 0.87 under the same conditions. Major conclusions were that design tools available today would undoubtedly permit the original goals to be met or exceeded. However, the application for such a design is currently questionable because efficiency goals considered acceptable for most current programs have risen considerably from the level considered acceptable at the inception of this effort. Splitter vanes placed in the rotor permitted very high diffusion levels to be achieved without stalling. However, viscous effects causing three-dimensional flows violating the assumption of flow confined to concentric stream tubes were so strong that a geometry optimization does not appear practical without a three-dimensional, viscous analysis. Passive boundary-layer control in the form of vortex generators and slots does appear to offer some benefit under certain circumstances.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3