Shape Control for the Elastica Through Load Optimization

Author:

Nayak Arvind1,Handral Poornakanta1,Rangarajan Ramsharan2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India

2. Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India e-mail:

Abstract

Flexible elastic beams can function as dexterous manipulators at multiple length-scales and in various niche applications. As a step toward achieving controlled manipulation with flexible structures, we introduce the problem of approximating desired quasi-static deformations of a flexible beam, modeled as an elastica, by optimizing the loads applied. We presume the loads to be concentrated, with the number and nature of their application prescribed based on design considerations and operational constraints. For each desired deformation, we pose the problem of computing the requisite set of loads to mimic the target shape as one of optimal approximations. In the process, we introduce a novel generalization of the forward problem by considering the inclinations of the loads applied to be functionals of the solution. This turns out to be especially beneficial when analyzing tendon-driven manipulators. We demonstrate the shape control realizable through load optimization using a diverse set of experiments.

Funder

Indian Space Research Organisation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary design of magnetic soft continuum robots;Proceedings of the National Academy of Sciences;2021-05-20

2. An elastica robot: Tip-control in tendon-actuated elastic arms;Extreme Mechanics Letters;2020-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3