Dynamic Feature Monitoring Technique Applied to Thin Film Deposition Processes in an Industrial PECVD Tool

Author:

Bleakie Alexander1,Djurdjanovic Dragan1

Affiliation:

1. University of Texas at Austin, Austin, TX

Abstract

In semiconductor fabrication processes, reliable feature extraction and condition monitoring is critical to understanding equipment degradation and implementing the proper maintenance decisions. This paper presents an integrated feature extraction and equipment monitoring approach based on standard built-in sensors from a modern 300mm-technology industrial Plasma Enhanced Chemical Vapor Deposition (PECVD) tool. Linear Discriminant Analysis was utilized to determine the set of dynamic features that are the most sensitive to different tool conditions brought about by chamber cleaning. Gaussian Mixture Models of the dynamic feature distributions were used to statistically quantify changes of these features as the condition of the tool changed. Data was collected in the facilities of a well-known microelectronics manufacturer from a PECVD tool used for depositing various thin films on silicon wafers, which is one of the key steps in semiconductor manufacturing. Dynamic features coming from the radio frequency (RF) plasma power generator, matching capacitors, pedestal temperature, and chamber temperature sensors were shown to consistently have significant statistical changes as a consequence of repeated cleaning cycles, indicating physical connections to the chamber condition.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3