Nussbaum-Type Neural Network-Based Control of Neuromuscular Electrical Stimulation With Input Saturation and Muscle Fatigue

Author:

Rui Chen1,Li Jie1,Chen Yinhe1,Zhang Qing1,Yang Ruzhou2,de Queiroz Marcio3

Affiliation:

1. School of Economic Management, Hebei University of Technology, Tianjin 300400, China

2. Zoox Inc., Foster City, CA 94404

3. Department of Industrial and Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803

Abstract

Abstract Neuromuscular electrical stimulation (NMES) is a promising technique to actuate the human musculoskeletal system in the presence of neurological impairments. The closed-loop control of NMES systems is nontrivial due to their inherent uncertain nonlinearity. In this paper, we propose a Nussbaum-type neural network (NN)-based controller for the lower leg limb NMES systems. The control accounts for model uncertainties and external disturbances in the system and, for the first time, provides a solution with rigorous stability analysis to the adaptive NMES tracking problem with input saturation and muscle fatigue. The proposed controller guarantees a uniformly ultimately bounded (UUB) tracking for the knee-joint angular position. To evaluate the control performance, a simulation study is taken, where the performance comparison with a NN controller inspired by Ge et al. (2004, “Adaptive Neural Control of Nonlinear Time-Delay Systems With Unknown Virtual Control Coefficients,” IEEE Trans. Syst., Man, Cybern.-Part B, 34(1), pp. 499–516) is given. The simulation results show a good tracking performance of the proposed controller regardless of the time-varying muscle fatigue and moderate input saturation. The adaptation mechanism of the Nussbaum-type gain and the controller's robustness to the muscle fatigue and input saturation are discussed in details along with the simulations.

Funder

Natural Science Foundation of Hebei Province

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3