Uniform Expansion of a Polymeric Helical Stent

Author:

Paryab Nasim1,Cronin Duane1,Lee-Sullivan Pearl1,Ying Xiong2,Boey Freddy Y. C.2,Venkatraman Subbu2

Affiliation:

1. Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West Waterloo, Ontario N2L 3G1, Canada

2. Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore

Abstract

Helical coil polymeric stents provide an alternative method of stenting compared to traditional metallic stents, but require additional investigation to understand deployment, expansion, and fixation. A bilayer helical coil stent consisting of PLLA and PLGA was investigated using the finite element model to evaluate performance by uniform expansion and subsequent recoiling. In vitro material characterization studies showed that a preinsertion water-soaking step to mimic body implantation conditions provided the required ductility level expansion. In this case, the mechanical contribution of the outer PLGA layer was negligible since it softened significantly under environmental conditions. The viscoelastic response was not considered in this study since the strain rate during expansion was relatively slow and the material response was primarily plastic. The numerical model was validated with available experimental expansion and recoiling data. A parametric study was then undertaken to investigate the effect of stent geometry and coefficient of friction at the stent-cylinder interface on the expansion and recoiling characteristics. The model showed that helical stents exhibit a uniform stress distribution after expansion, which is important for controlled degradation when using biodegradable materials. The results indicated that increasing stent width, pitch value, and coil thickness resulted in a larger diameter after recoiling, which would improve fixation in the artery. It was also noted that a helical stent should have more than five coils to be stable after recoiling. This work is part of a larger research study focused on the performance of a balloon-inflated polymeric helical stent for artery applications.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3