Affiliation:
1. Department of Applied Mathematics, University of Virginia, Charlottesville, VA 22903
Abstract
With the aid of formal asymptotic expansions, we conclude not only that elementary (Euler-Bernoulli) beam theory can be applied successfully to layered, orthotropic beams, possibly weak in shear, but also that, in computing the lower natural frequencies of a cantilevered beam, the most important correction to the elementary theory—of the relative order of magnitude of the ratio of depth to length—comes from effects in a neighborhood of the built-in end. We compute this correction using the fundamental work on semi-infinite elastic strips of Gregory and Gladwell (1982) and Gregory and Wan (1984). We also show that, except in unusual cases (e.g., a zero Poisson’s ratio in a homogeneous, elastically isotropic beam), Timoshenko beam theory produces an erroneous correction to the frequencies of elementary theory of the relative order of magnitude of the square of the ratio of depth to length.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献