Experimental and Numerical Investigation of High-Temperature Multi-Axial Fatigue

Author:

Ramesh Babu Harish1,Böcker Marco2,Raddatz Mario1,Henkel Sebastian2,Biermann Horst2,Gampe Uwe1

Affiliation:

1. Technische Universität Dresden, Institute of Power Engineering, Dresden 01069, Germany

2. Technische Universität Bergakademie Freiberg, Institute of Materials Engineering, Freiberg 09599, Germany

Abstract

Abstract Gas turbines and aircraft engines are dominated by cyclic operating modes with fatigue-related loads. This may result in the acceleration of damage development on the components. Critical components of turbine blades and disks are exposed to cyclic thermal and mechanical multi-axial fatigue. In this work, planar-biaxial low-cycle-fatigue (LCF) tests are conducted using cruciform specimens at different test temperatures. The influence on the deformation and lifetime behavior of the nickel-base disk alloy Inconel 718 is investigated at selected cyclic proportional loading cases, namely, shear and equi-biaxial. The calculation of the stress and strain distribution of the cruciform specimens from the experimental data is difficult to obtain due to complex geometry and temperature gradients. Therefore, there is a need for finite element (FE) Simulations. A viscoplastic material model is considered to simulate the material behavior subjected to uniaxial and the selected planar-biaxial loading conditions. At first, uniaxial simulation results are compared with the uniaxial experiment results for both batches of IN718. Then, the same material parameters are used for simulating the biaxial loading cases. The prediction of FE simulation results is in good agreement with the experimental LCF test for both shear and equi-biaxial loadings. The equivalent stress amplitude results of the biaxial simulation are compared with the uniaxial results. Furthermore, the lifetime is calculated based on the stabilized cycle from the simulation and by using Crossland and Sines multi-axial stress-based approaches. The Crossland model predicts fatigue life significantly better than the Sines model. Finally, the simulated lifetime results are compared with the experimental lifetime.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference32 articles.

1. Intelligent Life-Extending Controls for Aircraft Engines,2004

2. Thermal Mechanical Fatigue of Aircraft Engine Materials,1995

3. Kulawinski, D., 2015, “ Biaxial-Planare Isotherme Und Thermo-Mechanische Ermüdung an Polykristallinen Nickelbasis-Superlegierungen,” Doctoral thesis, Logos Verlag Berlin GmbH, Berlin, Germany. https://www.researchgate.net/publication/282010007_Biaxialplanare_isotherme_und_thermo-mechanische_Ermudung_an_polykristallinen_Nickelbasis-Superlegierungen

4. Fatigue Behavior of the Nickel-Base Superalloy WaspaloyTM Under Proportional Biaxial-Planar Loading at High Temperature;Int. J. Fatigue,2014

5. A Design Procedure for Assessing Low Cycle Fatigue Life Under Proportional and Non-Proportional Loading;Int. J. Fatigue,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3