Validation of a Turbine Blade Component Test With Frictional Contacts by Phase-Locked-Loop and Force-Controlled Measurements

Author:

Schwarz Stefan1,Kohlmann Lukas1,Hartung Andreas1,Gross Johann2,Scheel Maren2,Krack Malte2

Affiliation:

1. MTU Aero Engines AG, Dachauer Strasse 665, Munich 80995, Germany

2. Institute of Aircraft Propulsion Systems, Department of Aerospace Engineering, University of Stuttgart, Pfaffenwaldring 6, Stuttgart 70569, Germany

Abstract

Abstract In this paper, a validation approach for a turbine blade component test with frictional contacts is presented. The investigated system is derived from a high cycle fatigue test setup, where a turbine blade is base-excited in the clamped blade foot. The setup has been extended by laser scanning vibrometry, a force measurement platform, and feedback-controllers for both force level and phase. At first, a conventional validation of a linearized model of the system is performed at low amplitudes to ensure the correct modal basis for model reduction. After that, the nonlinear behavior around the fundamental mode is analyzed in detail. Frequency responses for different excitation levels and backbone curves are measured and assessed regarding repeatability and robustness of the measurement chain. Among other effects, overhanging branches of the frequency response were encountered. Nonlinear, amplitude-dependent modal frequencies and damping ratios are identified from the backbone curves. These data form the validation basis for a reduced-order model of the system considering nonlinear friction in the blade foot. The correlation of measurement and simulation is investigated and advantages and shortcomings of the different validation metrics are discussed.

Funder

German Federal Ministry for Economic Affairs and Energy

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3