Developing Region Solution for High Reynolds Number Laminar Flows of Pseudoplastic and Dilatant Fluids in Circular Ducts

Author:

Capobianchi Massimo1,McGah Patrick2

Affiliation:

1. Professor Mem. ASME Department of Mechanical Engineering, Gonzaga University, 502 E. Boone Avenue, Spokane, WA 99258-0026 e-mail:

2. Mem. ASME Department of Mechanical Engineering, University of Washington, Box 352600, Seattle, WA 98195 e-mail:

Abstract

This article reports the results of a numerical computation of the length and total pressure drop in the entrance region of a circular tube with laminar flows of pseudoplastic and dilatant fluids at high Reynolds numbers (i.e., approximately 400 or higher). The analysis utilizes equations for the apparent viscosity that span the entire shear rate regime, from the zero to the infinite shear rate Newtonian regions, including the power law and the two transition regions. Solutions are thus reported for all shear rates that may exist in the flow field, and a shear rate parameter is identified that quantifies the shear rate region where the system is operating. The entrance lengths and total pressure drops were found to be bound by the Newtonian and power law values, the former being approached when the system is operating in either the zero or the infinite shear rate Newtonian regions. The latter are approached when the shear rates are predominantly in the power law region but only if, in addition, the zero and infinite shear rate Newtonian viscosities differ sufficiently, by approximately four orders of magnitude or more. For all other cases, namely, when more modest differences in the limiting Newtonian viscosities exist, or when the system is operating in the low- or high-shear rate transition regions, then intermediate results are obtained. Entrance length and total pressure drop values are provided in both graphical form, and in tabular and correlation equation form, for convenient access.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3