Affiliation:
1. Professor Mem. ASME Department of Mechanical Engineering, Gonzaga University, 502 E. Boone Avenue, Spokane, WA 99258-0026 e-mail:
2. Mem. ASME Department of Mechanical Engineering, University of Washington, Box 352600, Seattle, WA 98195 e-mail:
Abstract
This article reports the results of a numerical computation of the length and total pressure drop in the entrance region of a circular tube with laminar flows of pseudoplastic and dilatant fluids at high Reynolds numbers (i.e., approximately 400 or higher). The analysis utilizes equations for the apparent viscosity that span the entire shear rate regime, from the zero to the infinite shear rate Newtonian regions, including the power law and the two transition regions. Solutions are thus reported for all shear rates that may exist in the flow field, and a shear rate parameter is identified that quantifies the shear rate region where the system is operating. The entrance lengths and total pressure drops were found to be bound by the Newtonian and power law values, the former being approached when the system is operating in either the zero or the infinite shear rate Newtonian regions. The latter are approached when the shear rates are predominantly in the power law region but only if, in addition, the zero and infinite shear rate Newtonian viscosities differ sufficiently, by approximately four orders of magnitude or more. For all other cases, namely, when more modest differences in the limiting Newtonian viscosities exist, or when the system is operating in the low- or high-shear rate transition regions, then intermediate results are obtained. Entrance length and total pressure drop values are provided in both graphical form, and in tabular and correlation equation form, for convenient access.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献