A Novel Efficient Energy Absorber With Necking-Expansion of Foam Sandwich Tubes

Author:

Guo Haoyuan1,Zhang Jianxun1

Affiliation:

1. Xi’an Jiaotong University State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, , Xi’an 710049 , China

Abstract

Abstract Foam sandwich tube is composed of two tubes and a lightweight foam core possessing various advantages, i.e., low density, excellent mitigation performance and energy absorption, etc. With the hope of enhancing the load bearing and energy absorption capacity of energy absorbers, a novel efficient energy absorber composed of axial necking-expansion deformation mode for sandwich circular tube with metal foam core (SCMF-Tube) by an inner-outer conical-cylindrical die is proposed. Considering deformation modes including necking, stretching, bending, and strain hardening of metal tubes as well as densification of the metal foam core, we established an analytical model of necking-expansion deformation for the SCMF-Tube. Then, finite element (FE) simulations are conducted. Analytical deformation modes, load-displacement curves, and bending radii all agree well with the FE results. Effects of material property and geometry on the necking-expansion deformation of SCMF-Tubes are discussed in detail based on the validated analytical model. Adjusting parameters, such as the wall thickness ratio of the inner tube to the outer tube and the maximum diameter of the die can improve the load bearing and energy absorption capacity of the novel energy absorber. Finally, the specific energy absorption of the SCMF-Tube under necking-expansion deformation is 68% higher than that of the circular metal tube under expansion deformation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3