Modal Analysis for Localization of Harmonic Oscillations in Nonlinear Oscillator Arrays

Author:

Harata Yuji1,Ikeda Takashi2

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Aichi Institute of Technology , 1247, Yachigusa, Yakusa-cho, Aichi, Toyota 470-0392, Japan

2. Department of Mechanical Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University , 1-4-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan

Abstract

Abstract When a nonlinear oscillator array is harmonically excited, specific oscillators in the array may oscillate with large amplitudes. This is known as the localization phenomenon; however, the reason for localization has not been clarified thus far. Thus, the aim of this study is to elucidate the reason for localization in nonlinear oscillator arrays. We theoretically investigated the behavior of a nonlinear oscillator array, which consists of N Duffing oscillators connected by linear springs under external and harmonic forces. The equations of motion in physical coordinates are transformed into modal equations of motion, which reveal that the array forms an autoparametric system in the modal coordinates when it consists of identical oscillators. The first mode of vibration is directly excited by the external force, whereas the remaining modes are indirectly excited by the nonlinear terms coupled with the first mode. The approximate solutions of the harmonic oscillations were obtained using van der Pol's method. The frequency response curves (FRCs) for both the physical and modal coordinates for N = 2 and 3 are presented. Localization can occur when multiple modes are excited simultaneously. Furthermore, the effects of imperfections in the restoring forces on the responses of the two-Duffing-oscillator array are examined.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3