Disassembly and Repairability of Mechatronic Products: Insight for Engineering Design

Author:

Boix Rodríguez Núria1,Favi Claudio1

Affiliation:

1. University of Parma Department of Engineering and Architecture, , Parco Area delle Scienze 181/A, Parma 43124 , Italy

Abstract

Abstract Designing mechatronic products requires interdisciplinary skills and as products become more complex, the design of mechatronic systems plays a critical role. To minimize waste production and pollution, a shift toward a circular economy is necessary, with mechatronic products being particularly impacted by such policies. Repairing plays a key part in achieving a circular economy. Through repairability, the product lifespan can be extended, and combined with maintenance the rate of product replacement can be reduced. Within this context, the goal of this paper is to propose a design methodology (based on the EN 45554:2020 standard) for generating and implementing eco-design rules for disassembly and repair. The methodology has four phases, the first one is the identification of target components (those that are more likely to fail during the lifespan). The second phase encompasses the experimental disassembly analysis which can be manual or virtual. The third phase is the assessment of the disassemblability index which includes the analysis of parameters that affect the disassembly phase. The last phase is the implementation of the eco-design methodology for all the components that do not meet the minimum repairability requirements. A case study of electro-mechanical ovens is presented, targeting replaceable components. The results show that the use of this framework and the eco-design actions derived from it are successful in improving the repairability of the product and increasing the disassemblability index (30% on average) through a virtual analysis. A sensitivity analysis has been conducted to study the impact of parameter weight modification. This research contributes to advancing repairability and supporting the circular economy paradigm in mechatronic product design.

Funder

Università degli Studi di Parma

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3