Investigation of Auto-Ignition of a Pulsed Methane Jet in Vitiated Air Using High-Speed Imaging Techniques

Author:

Meier W.1,Boxx I.1,Arndt C.1,Gamba M.2,Clemens N.3

Affiliation:

1. Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38, D-70569 Stuttgart, Germany

2. Department of Mechanical Engineering, Stanford University, Building 530, 440 Escondido Mall, Stanford, CA 94305-3030

3. Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX 78712

Abstract

An experimental arrangement for the investigation of auto-ignition of a pulsed CH4 jet in a coflow of hot exhaust gas from a laminar lean premixed H2/air flame at atmospheric pressure is presented. The ignition events were captured by high-speed imaging of the OH∗ chemiluminescence associated with the igniting flame kernels at a frame rate of 5 kHz. The flow-field characteristics were determined by high-speed particle image velocimetry and Schlieren images. Furthermore, high-speed imaging of laser-induced fluorescence of OH was applied to visualize the exhaust gas flow and the ignition events. Auto-ignition was observed to occur at the periphery of the CH4 jet with high reproducibility in different runs concerning time and location. In each measurement run, several hundred consecutive single shot images were recorded from which sample images are presented. The main goals of the study are the presentation of the experimental arrangement and the high-speed measuring systems and a characterization of the auto-ignition events occurring in this system.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3