An Integrated Experimental and Theoretical Approach to Evaluate Si Strength Dependent on the Processing History

Author:

Brueckner John1,Dudek Rainer1,Rzepka Sven1,Michel Bernd1

Affiliation:

1. Fraunhofer ENAS, Chemnitz, Germany

Abstract

Silicon is the most widely used semiconductor material for MEMS and electronic applications. The strength of silicon has a critical impact on the reliable and accurate function of these components. In packaging assembly, reliability tests as well as in operation life the silicon die can be exposed to high stresses. For a theoretical risk assessment of die cracking due to the mentioned loadings a failure criterion is needed, which is capable to account the processing history. Therefore, the experimental characterization via fracture tests, analysis of different Si surface structures by Laser-Scanning-Microscopy (LSM) and Transmission-Electron-Microscopy (TEM) and a numerical approach using Finite Element Simulation was combined to allow failure prediction. In the fracture tests the influences of the backside grinding and the stress relief processes were investigated. The test dies were fabricated using the Dicing-before-Grinding (DBG) process with different mesh sizes of the grinding wheel. Additionally dry polishing and plasma etching were applied as stress relief processes. Bending tests are commonly used for the strength characterization of brittle materials like ceramics and silicon. The ball-ring-test was conducted to exclude edge effects on the strength, which are still under investigation in an additional part of the study. It was found that the determined fracture stresses follow a three-parametric Weibull distribution. The surface topography and roughness, respectively, was measured via LSM. TEM was applied to determine the structure of the surface-near damage-layer. In addition to the experimental investigations numerical calculations by means of Finite Element Simulations were performed in order to calculate critical fracture stresses from testing including anisotropic and geometric nonlinear effects. Furthermore, a submodeling-technique was applied to understand the effects of experimentally observed surface states on the critical stress, i.e. roughness, grinding marks, flaws, and poly Si-layers. Detailed modeling included local modeling of surface roughness on the critical strength.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3