Thermal Reliability of Low-Cost High-Power LED Package Module Under WHTOL Test

Author:

Chen C. H.1,Tsai W. L.1,Tang C. Y.1,Tsai M. Y.1

Affiliation:

1. Chang Gung University, Tao-Yuan, Taiwan

Abstract

The LED issues, associated with high cost, high junction temperature, low luminous efficiency, and low reliability, have to be solved before gaining more market penetration. With special features of low-junction-temperature and low-cost design, COP (Chip-on-Plate) LED package modules with and without phosphors are evaluated in terms of their thermal resistance and reliability under wet high temperature operation life (WHTOL) test. The WHTOL test is with the condition of 85°C/85% RH and 350mA of forward current for 1008 hrs, specified in JESD22 Method A101-B. First of all, the thermal behaviors of the COP package module are investigated by experimental measurement, and a computational fluid dynamics approach. The reliability under WHTOL test is then carried out. The results show that all COP package modules with phosphors in the silicone encapsulant failed after 309 hrs at WHTOL test, but all those without phosphors passed for 1008 hrs. The failure sites are located at aluminum wire debonding to the chip and copper pads of the substrate. However, the aluminum wire bonding of the COP package modules are replaced to gold wire bonding, then all COP package modules with and without phosphors pass for 1008 hrs. For the passing package modules, their thermal resistances are found to increase more than two fold after 1008 hrs of the WHTOL test from 41°C/W to 87.1°C/W. This is due to the thermal conductivity decreasing in the die attach and thermal grease and the contact resistance increasing after the moisture absorption. Moreover, for the thermal behavior of the COP package modules under the natural and forced convections in the WHTOL test, the results show that there exists the difference of 17°C/W in the junction-to-air thermal resistances, which might result in different reliability data. In addition, it is also indicated that the junction-to-air thermal resistances are very sensitive to the flow conditions of the chamber, but not for junction-to-aluminum substrate and junction-to-heat sink thermal resistances. Therefore, the standard test of the WHTOL should specify flow conditions in the test chamber.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3