Characterization of NORM Contaminated Sites at the Syrian Oilfield: Depth Profiles and Leaching Processes

Author:

Al-Masri M. S.1,Aba A.1,Al-Hamwi A.1,Mukallati H.1

Affiliation:

1. AECS

Abstract

Production water containing naturally occurring radioactive materials (NORM) has been collected in unlined artificial lagoons for evaporation in some Syrian oilfields. These lagoons have become highly contaminated with NORM and the situation has urged the operating oil companies in Syria to initiate a remediation program in cooperation with the Atomic Energy Commission of Syria. Part of this national remediation program is to characterize the contaminated soil as a preliminary step for disposal of this waste. Depth profiles of radioactivity have been established and found to be variable from one field to another. Factors that influence this distribution have been evaluated and are presented. Laboratory leaching experiments were performed using six 60-cm cores collected from highly contaminated areas in the oil fields. Results show that 226Ra is transferred to deep layers via erosion caused by disposal of production water and some heavy rain water that occurred in the past. This erosion process is mainly affected by the mineralogical compositions of the contaminated soil and the particle size distribution. Gypsum present in the soil has increased transfer of 226Ra from surface layers to deeper layers; water has caused some sink holes (caves) in those soils containing high amount of gypsum. In addition, 226Ra was also determined in different particle size soil samples before and after leaching experiments where small soil particles sizes were found to be moved downwards by water. Radium was only more concentrated in smaller particle sizes than larger ones in those samples containing low concentration of gypsum. In addition, halite content in the upper soil layers has increased the radium specific activity after leaching since it dissolved in water and moved to deeper layers.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Determination of 226Ra Contamination Depth Around Phosphogypsum Pit Using In-Situ Gamma Spectrometer;Bulletin of Environmental Contamination and Toxicology;2018-06-11

2. A Study on Sorption of 226Ra on Different Clay Matrices;Bulletin of Environmental Contamination and Toxicology;2016-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3