Affiliation:
1. Computational Multiphysics Systems Laboratory, Center of Materials Physics and Technology, U.S. Naval Research Laboratory, Washington, DC 20375
Abstract
Abstract
A multiphysics computational framework is introduced and exercised to predict the wear behavior of two deformable, heat-conducting bodies under conditions of sliding contact. This framework enables the solution of a coupled system of partial differential equations (PDEs) expressing the conservation of energy and momentum along with two ordinary differential equations (ODEs) expressing mass conservation. This system is intended to capture wear evolution for each of the bodies forming a wear pair, in a self-consistent manner. Furthermore, an arbitrary-Lagrangian-Eulerian approach has been integrated to enable tracking the evolution of the wear fronts on both elements of the sliding contact pair through physics-informed mesh deformation. A theorem and a corollary are proved to indicate that most existing models describing wear that are expressed in the form of an ODE are actually manifestations of the law of conservation of mass. The framework is applied for two distinct slider-base pairs. The first involves an aluminum alloy slider and a copper alloy base. The second pair is identical to the first except it contains a thin strip of soda-lime glass embedded in the surface of the base. The effects of this glass layer on the wear of all participating bodies in comparison to the pair that does not contain this layer are presented. They indicate that while the glass layer has a wear mitigation effect for the stationary base it slightly increases the wear of the slider when compared with the respective bodies when the glass is not present.
Funder
Office of Naval Research
Naval Surface Warfare Center
Subject
Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software
Reference40 articles.
1. Simulating Sliding Wear With Finite Element Method;Põdra;Tribol. Int.,1999
2. Simulating Sliding Wear With Finite Element Method;Po;Tribol. Int.,1999
3. Finite-Element Modeling of Dry Sliding Wear in Metals;Molinari;Eng. Comput.,2001
4. Finite Element Based Simulation of Dry Sliding Wear;Hegadekatte;Modell. Simul. Mater. Sci. Eng.,2005
5. Wear Patterns and Laws of Wear—A Review;Zmitrowicz;J. Theor. Appl. Mech.,2006
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献