The Role of Fluid Shear and Metastatic Potential in Breast Cancer Cell Migration

Author:

Riehl Brandon D.1,Kim Eunju1,Lee Jeong Soon1,Duan Bin2,Yang Ruiguo3,Donahue Henry J.4,Lim Jung Yul5

Affiliation:

1. Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588

2. Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198

3. Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198

4. Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284

5. Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W317.3 Nebraska Hall Lincoln, NE 68588; Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198

Abstract

Abstract During the migration of cancer cells for metastasis, cancer cells can be exposed to fluid shear conditions. We examined two breast cancer cell lines, MDA-MB-468 (less metastatic) and MDA-MB-231 (more metastatic), and a benign MCF-10A epithelial cell line for their responsiveness in migration to fluid shear. We tested fluid shear at 15 dyne/cm2 that can be encountered during breast cancer cells traveling through blood vessels or metastasizing to mechanically active tissues such as bone. MCF-10A exhibited the least migration with a trend of migrating in the flow direction. Intriguingly, fluid shear played a potent role as a trigger for MDA-MB-231 cell migration, inducing directional migration along the flow with significantly increased displacement length and migration speed and decreased arrest coefficient relative to unflowed MDA-MB-231. In contrast, MDA-MB-468 cells were markedly less migratory than MDA-MB-231 cells, and responded very poorly to fluid shear. As a result, MDA-MB-468 cells did not exhibit noticeable difference in migration between static and flow conditions, as was distinct in root-mean-square (RMS) displacement—an ensemble average of all participating cells. These may suggest that the difference between more metastatic MDA-MB-231 and less metastatic MDA-MB-468 breast cancer cells could be at least partly involved with their differential responsiveness to fluid shear stimulatory cues. Our study provides new data in regard to potential crosstalk between fluid shear and metastatic potential in mediating breast cancer cell migration.

Funder

AHA Scientist Development Grant

Nebraska Collaborative Initiative

NIH/NIGMS Great Plains IDeA-CTR

NIH/NIGMS Nebraska Center for Integrated Biomolecular Communication

NIH/NIGMS Nebraska Center for Nanomedicine

NIH/NIGMS Nebraska Center for the Prevention of Obesity Diseases

NSF

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3