Efficient Virtual Tribomechadynamics by Means of Joint Modes for Detailed Investigation of Complex Local Stick and Slip Behavior Inside a Joint

Author:

Pichler Florian1,Witteveen Wolgang1,Koller Lukas1

Affiliation:

1. Department of Mechanical Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria

Abstract

Abstract In the last years, the numerical and experimental research effort on joint nonlinearities and tribomechadynamics has increased. Thereby, local sticking and slipping effects as well as the influence of friction caused damping on the global dynamics are of interest. Conventional computational approaches like model order reduction techniques or the finite element method lead either to insufficient result quality or a high computational burden. For the efficient numerical consideration of jointed structures in combination with model order reduction, joint modes based on trial vector derivatives have been presented. These joint modes enable accurate computation of local nonlinear contact and friction forces together with efficient time integration even for high fidelity finite element models. This article describes the application of joint modes for efficient virtual tribomechadynamics. Therefore, a generic structure including a bolted joint is used. It is investigated if these joint modes reproduce local friction stress, and sticking/slipping areas comparable to the nonlinear finite element method within reasonable computational times. Moreover, global damping effects are studied at different preload levels and related to local sticking/slipping behavior. The numerical studies confirm that joint modes lead to accurate results with low computation effort and hence allow an efficient and detailed virtual investigation of complex joints. In addition, this publication shows that the consideration of tangential stiffness for the computation of joint modes remarkably increases the local result quality.

Publisher

ASME International

Subject

General Engineering

Reference30 articles.

1. Modeling the Dynamics of Mechanical Joints;Bograd;Mech. Syst. Signal Process.,2011

2. The Role of Friction in Mechanical Joints;Gaul;ASME Appl. Mech. Rev.,2001

3. Nonlinear Dynamics of Structures Assembled by Bolted Joints;Gaul;Acta Mech.,1997

4. Measured and Estimated Friction Interface Parameters in a Nonlinear Dynamic Analysis;Schwingshackl;Mech. Syst. Signal Process.,2012

5. Modeling of the Dynamics of Jointed Beam Structures;Song,2003

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3